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ABSTRACT

This paper applies Bayesian inference with normal–normal conjugate to forecast renewable energy generation. The generation forecasts a probability distribu-
tion rather than a quantitative value. An assumed normal distribution is initialized for renewable energy generation. This assumed normal distribution’s param-
eters, the mean μ, and the standard deviation σ, are inferred by Bayesian inference afterward. However, applying Bayesian inference barely shall encounter an 
intractable integral. To circumvent the intractable integral, this paper considers the normal-normal conjugate method. This method fixes the assumed normal 
distribution’s σ and characterizes μ as another normal distribution and then infers the latter normal distribution parameters. A case study of waste-to-energy 
generation forecast in Taiwan is investigated in this paper. It has been found from the investigation that the Bayesian inferred probability distribution outper-
forms the assumed one.

Index Terms—Bayesian inference, forecast, normal–normal conjugate, renewable energy generation, waste-to-energy

I. INTRODUCTION
Currently the global temperature keeps rising and causes many 
threats like warm house effect, extreme climate, and ecological 
disasters. The temperature rise is a consequence of vast carbon 
emissions from various vehicles, industrial factories, and electric 
power generation plants. They all consume a great amount of fos-
sil fuel. In order to reduce fossil fuel consumption, engineers have 
developed renewable energy, including wind power, solar photovol-
taic, biomass energy, and so on. Developing renewable energy not 
only reduces fossil fuel consumption but also creates an eco-friendly 
environment. Tremendous efforts have been contributed to devel-
oping renewable energy generation [1, 2].

Developing renewable energy is a remedy, but it also brings new 
challenges. Take wind power as an example. Sometimes the weather 
is windy so wind power is adequate. Sometimes the weather is 
calm so wind power shall be inadequate. Obviously, the renewable 
energy is intermittent. One of the challenges is transforming renew-
able energy into electric power and saving the electricity. Many 
electric energy storage schemes like superconducting material, 

super capacitor, batteries, and large-scale pumped storage scheme 
are underdeveloped [3-5]. Another challenge is forecasting renew-
able energy generation. Engineers attempt to forecast intermittent 
renewable energy generation accurately for the sake of operat-
ing the power system economically and reliably. Many methods of 
renewable energy forecasts or predictions have been studied. These 
methods include moving average (MA), auto-regressive MA (ARMA), 
artificial neural network (ANN), support vector machine (SVM), and 
hybrid intelligence [6–7].

Most of these methods forecast a quantitative value associated 
with a certain error. This paper provides another viewpoint. It fore-
casts a probability distribution of the renewable energy generation. 
The probability distribution is inferred by the Bayesian inference. It 
can be considered a data-driven approach. In literature, the Bayes 
theorem has been applied to many power system aspects, such as 
transient stability assessment [8], parameter identification of power 
system dynamic model [9], power flow analysis [10], power plant 
dispatch [11], optimal power load flow [12], and power system state 
estimation [13].
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This paper applies Bayesian inference with normal–normal conjugate 
to forecast renewable energy generation. To begin, an assumed nor-
mal distribution for renewable energy generation is initialized. This 
assumed normal distribution is characterized by two parameters, the 
mean μ and the standard deviation σ. This assumed normal distribu-
tion will be inferred by Bayesian inference afterward. However, using 
Bayesian inference barely shall encounter an intractable integral 
problem. To circumvent this intractable problem, Bayesian inference 
is aided by the normal–normal conjugate method in this paper. The 
normal–normal conjugate method first fixes the former assumed 
normal distribution’s σ and characterize μ as another normal distri-
bution. The latter normal distribution’s parameters are called hyper-
parameters. Next, the normal–normal conjugate method updates 
hyperparameters analytically. The updated hyperparameters shall 
characterize the former assumed normal distribution parameter 
μ. Finally, the characterized parameter μ, together with the fixed 
parameter σ, constitutes the inferred normal distribution. This 
paper applies this inferred normal distribution to forecast renewable 
energy generation.

To testify the proposal, a case study of Taiwanese waste-to-energy 
power generation is investigated. Waste-to-energy is one of the 
renewable energy resources. In the renewable energy realm, much 
attention has been focused on wind power and solar photovoltaic 
generation. The waste-to-energy generation appears to be ignored 
in literature. This paper attempts to make up this ignorance.

II. BAYESIAN INFERENCE
A. Probability Distribution and Its Parameters
Probability distribution describes the possible values of a random 
variable. It also describes the probabilities of occurrence of those 
values. Parameters are the controllable parts of a probability distri-
bution. Parameters decide the shape, or content, of a probability dis-
tribution. For a discrete random variable, probability distribution is 
discrete. It contains all values of probabilities that add up to one. For 
a continuous random variable, probability distribution is continuous. 
The area under a continuous probability distribution is one [14].

A classic example of discrete random variable is tossing a coin, which 
appears either head or tail. This example can be expressed by a bino-
mial distribution, which is given in (1),

 Pr ; ,y f y n p C p py
n y n y� � � � � � �� � �1  (1)

In (1), Pr �� �  “means” represents the probability, and f means a func-
tion, where y is the number of appearing heads or tail. Binomial dis-
tribution is characterized by 2 parameters, n and ρ. n is the number 

of trial, and P is the probability of a head appearing. For example, 
the probability of obtaining two heads when tossing a fair coin (with 
P = 0.5) for three times is

Pr ; , . . . . . .2 2 3 0 5 0 5 1 0 5 3 0 5 1 0 5 0 3752
3 2 3 2 2 3 2� � � � � � �� � � � � �� � �

� �f C  (2)

Binomial distribution can be presented simply by (3).

 Y n p~ ,Binomial� �  (3)

Note that in (3), Y denotes the discrete random variable. That is, 
tossing three times a fair coin is represented simply by

 Y ~ , .Binomial 3 0 5� �  (4)

The random variable Y has values y = 0,1,2,3. And Pr (Y = y) is 0.125, 
0.375, 0.375, and 0.125, respectively. Fig. 1 shows the binominal dis-
tribution of the results.

A special case of binominal distribution is the Bernoulli distribution. 
Bernoulli distribution indicates that n = 1. It means that if we toss a 
coin just one time and the coin is fair, then the probability of appear-
ing head is 

 f C p py
n y n y1 1 0 5 1 0 5; , . .� � � �� � �

�  (5)

However, if the coin is not fair, say, the probability of appearing head 
is 0.4, then we would have

 f C p py
n y n y1 1 0 4 1 0 4; , . .� � � �� � �

�  (6)

For a continuous random variable case, a well-known probability 
distribution is the normal distribution. It is also called the Gaussian 
distribution. It has two parameters, the mean μ and the standard 
deviation σ. The normal distribution is expressed by

 P x f x� � � � � � � �� � � �; ,
/

� �
��

� �1
2

2 22
e

x
 (7)

It should be emphasized that the outcome is a probability density 
P �� � , rather than a probability Pr �� � . Like binomial distribution, the 
normal distribution can be represented simply by

Main Points

• Apply Bayesian inference to forecast renewable energy.
• The Bayesian inference is aided with normal–normal 

conjugate.
• Forecast the waste-to-energy generation in Taiwan.
• Eighty percent accuracy of unforeseen data samples is tested. Fig. 1. Binominal distribution.
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 x N~ ,� �� �  (8)

Take the lifespan of a rainbow as an example. If a rainbow lifespan on 
the average is 30 minutes, and if the probability distribution’s stan-
dard deviation is 6 minutes, then the normal distribution is shown 
in Fig. 2.

By means of the mean μ and the standard deviation σ, a normal dis-
tribution has the property of

μ ± 1σ will cover a probability of 0.6827.
μ ± 2σ will cover a probability of 0.9545.

 μ ± 3σ will cover a probability of 0.9973. (9)

According to (9), it is commonly said that μ ± 3σ will cover almost all 
the population [14].

No matter what type of probability distributions are, their parameters 
describe how the distributions look like. Different parameters lead to 
different distribution shapes. By tuning a distribution’s parameters, 
the shape of the probability distribution will be changed.

B. Bayesian Inference
Before introducing the Bayesian inference, it is essential to revisit 
conditional probability. (10) tells the conditional probability that the 
probability of hypothesis A occurred, given hypothesis B occurred.

 Pr A B(  (10)

Again, the term Pr �� �  indicates that it is a probability. The vertical 
bar means that the probability of hypothesis A given hypothesis B.

Extending conditional probability in (10), we yield the Bayes theo-
rem [15],

 Pr A B
Pr B A Pr A

Pr B A Pr A Pr B A Pr A
� � � � � � � �

� � � � � � � � � � �~ ~
 (11)

In (11), Pr A B� �  is the posterior probability of A given B, Pr (B|A), is 
the probability of B given A, and Pr (A) is the prior probability of A. It 
Pr B A~� �  is the probability of the B given ~A. The symbol “~” means 
the logical operator “NOT.” Pr(~A) is the probability of ~A. Assuming 

there are n hypotheses, and also assuming the ith hypothesis denoted 
by Hi, we can extend the Bayesian theorem from (11) into

 Pr H data
Pr data H Pr H

Pr data H Pr H
i

i i

i

n

i i

� � � � � � � �
� � � � �

�� 1

 (12)

(12) is used for discrete distribution case. In practice, a hypothesis 
Hi refers to a parameter value of the probability distribution. For 
the continuous random variable case, the probability distribution 
parameter is denoted by θ. The variable θ can be a vector if there are 
multiple parameters for the probability distribution. For the continu-
ous probability distribution, we shall have infinite hypotheses for a 
parameter. Therefore, the Bayesian inference becomes

 P data
P data Pr

P data Pr d
�

� �

� � �
� � � � � � � �

� � � � � �
 (13)

It is worth pointing out that the term Pr (data|Hi) in (12) and the 
term P (data|θ) in (13) are called likelihood. The meaning of likeli-
hood is very similar to that of probability, but likelihood and prob-
ability are different to a certain extent. Likelihood can be explained 
by that, given a probability distribution’s parameter (or hypothesis) 
and also given the outcome of a random experiment, the likelihood 
is the probability of the experimental outcome under the hypoth-
esis (namely, under the parameter). Table I summarizes the steps of 
applying Bayesian inference to a research topic.

Note that prior and posterior probability distribution functions 
are identical but their parameters are not. The parameters of prior 
and posterior probability are called hyperparameters. Likewise, 
the assumed and the inferred probability distribution functions 
are identical but their parameters are not. Hyperparameters 
characterize the assumed and inferred probability distributions’ 
parameters.

III. CONJUGATE METHOD
Exercising Bayesian inference represented in (12) is quite straight-
forward, but exercising (13) is not. In practice, the integral in the 
denominator of (13) is intractable. The conjugate method is a tool 
to circumvent that intractable integral which is replaced by analytic 
algebraic equations [16].

Unfortunately, the conjugate method is not applicable to all cases. It 
is confined to some special cases. For example, if research topic data 
comply with binomial distribution, and if beta distribution is selected 
to suggest binomial distribution parameter, then the beta-binomial 
conjugate method can be applicable. Another example is that if the 
research topic data comply with normal distribution, and if a normal 
distribution is selected to suggest the former normal distribution’s 
mean μ, then normal–normal conjugate method is applicable. The 
normal–normal conjugate method requires that the former normal 
distribution’ standard deviation σ shall be fixed.

This paper assumes that the renewable energy generation data com-
ply with the normal distribution. Exercising Bayesian inference to 
estimate parameter μ, we have

Fig. 2. Normal distribution.
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 P data
P data P

P data P d
�

� �

� � �
� � � � � � � �

� � � � � �
 (14)

To circumvent the intractable integral in the denominator of (14), the 
normal–normal conjugate method is summoned up. First, a statisti-
cal term called precision, denoted by τ, is defined by

 �
�

�
1
2  (15)

Or namely,

 �
�

�
1  (16)

Next, the normal–normal conjugate method updates the hyperpa-
rameters of the prior probability distribution to

 �
� �

� �

�
posterior

prior prior
i

n

i

prior

x

n
�

�

� �
�� 1 ,  (17)

 � � �posterior prior n� � �   (18)

Note that n and Xi represent the total number of collected data and 
the ith data sample, respectively. τ is the precision of the assumed 
normal distribution. Notice that in (17) and (18), the subscript “prior” 
denotes the hyperparameters of prior probability distribution, and 
the subscript “posterior” denotes those of posterior probability dis-
tribution. Table II summarize the steps of Bayesian inference with 
normal–normal conjugate method.

IV. CASE STUDY
A. Data Description
This paper considered the waste-to-energy generation data in Taiwan 
from January 2018 to October 2023. These data can be found from 
the Taiwan government open data platform [17]. These data were 
selected because the waste-to-energy equipment total capacity in 
Gigawatt over this time span was fixed. Table III shows parts of these 
data. The first column is the year and month. The second column is 
the total capacity of waste-to-energy power generation equipment 
[18]. The unit is Gigawatt. The third column is the electric power gen-
eration of that month in Taiwan [19]. Its unit is Gigawatt hours.

B. Bayesian Inference Results
We followed the steps listed in Table II. Step 1 assumed a normal 
distribution could represent waste-to-energy power generation 
monthly in Taiwan. Step 2 suggested that the assumed probability 
distribution mean μ was 367.5374 GWH and standard deviation σ 
was 50 GWH. The suggested mean μ came from the total operating 
hours at RenWu waste-to-energy plant in 1 year were 7830 hours, 
and the ratio of equipment utilization was 89.14% [20]. Accordingly, 
the mean μ was suggested by

TABLE I. 
STEPS FOR BAYESIAN INFERENCE

Step Content

1 Assume a probability distribution that suits the research 
topic.

2 Suggest hypotheses, i.e., parameters, of the assumed 
probability distribution in step 1.

3 Select another probability distribution for each hypothesis 
(i.e., parameter) in step 2. This selected probability 
distribution is called the prior probability distribution whose 
parameters are called hyperparameters.

4 Collect data regarding the research topic.

5 Calculate likelihood of the collected data under each 
hypothesis.

6 Update hyperparameters of the prior probability distribution 
by (8) or (9). The updated probability distribution becomes 
the posterior probability distribution.

7 Infer the probability distribution from the assumed one in 
step 1 with the aid of the posterior probability distribution.

TABLE II. 
STEPS FOR BAYESIAN INFERENCE WITH NORMAL–NORMAL 

CONJUGATE METHOD

Step Content

1 Assume a probability distribution that suits the research 
topic.

2 Suggest hypotheses, i.e. parameters, of the assumed 
probability distribution in step 1.

3 Select another probability distribution for each hypothesis 
(i.e., parameter) in step 2. This selected probability 
distribution is called the prior probability distribution whose 
parameters are called hyperparameters.

4 Collect data regarding the research topic.

5 Update hyperparameters of the prior probability distribution 
by (13) and (14) to obtain hyperparameters of the posterior 
probability distribution.

6 Infer the probability distribution from the assumed one in 
step 1 with the aid of the posterior probability distribution.

TABLE III. 
WASTE-TO-ENERGY GENERATION MONTHLY IN TAIWAN

Date Capacity (GW) Generation (GWH)

01/2018 0.6319 335.8172

02/2018 0.6319 300.4179

03/2018 0.6319 296.3097

… … …

10/2023 0.6319 265.9801
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 0 6319 7830 0 8914 12 367 5374. . .� � � � GWHpermonth  (19)

Fig. 3 shows the assumed probability distribution for monthly waste-
to-energy power generation monthly in Taiwan. Notice that the stan-
dard deviation σ must be fixed as we used normal–normal conjugate 
method.

Step 3 selected another normal distribution, i.e., prior distribution, 
to represent the parameter mean μ. The hyperparameters μpiror and 
σpiror were set to 367.5374 GWH and 70 GWH, respectively. The μpiror 
was set 367.5374 GWH because of the same suggestion in the last 
paragraph, while the σpiror was set 70 GWH to allow a larger range. 
Fig. 4 plots the prior distribution for μ.

Step 4 collected 60 data samples from 01/2018 to 12/2022 in Table 
III. Step 5 updated the posterior distribution hyperparameters 
μpostetior and σposterior from (17) and (18). It yielded 300.2529 for μposterior, 
and 6.4277 for σposterior. The posterior distribution is plotted in red 
dotted line in Fig. 5. To compare, Fig. 5 placed the prior and posterior 
distributions in one figure. It can be seen that the posterior distribu-
tion has been shifted toward left, and it has also been centralized. 
Fig. 5 suggests that we are more confident in the parameter μ, the 
aid of Bayesian inference normal–normal conjugate method and also 
of the collected data.

Once we had updated hyperparameters μposterior and σposterior for the 
posterior distribution, we applied the z-test to find the confidence 
interval of the parameter μ [21]. Calculate the z value.

 z x
n

�
��

� /
 (20)

Considering two-sided confidence level of 99%, we found from 
standard normal distribution table that the critical z value is 2.58. 
Therefore, (20) led to

 � �
�

�2 58 2 58.
/

.x
n
�

�
 (21)

Substituting μposterior 300.2529 and σposterior 6.4277 into (21), we 
obtained

 300 2529 2 58 6 4277
60

300 2529 2 58 6 4277
60

. . . . . .
�

�
� � �

�
�  (22)

Rearranging (22), we had

 298 1120 302 3938. .� ��  (23)

Above inequality states that the probability of parameter μ falling 
in the interval of 298.1120 and 302.3938 is 0.99, with the aid of the 
posterior distribution and z-test.

Finally, step 6 infers the probability distribution. Adopting the mini-
mum μ and maximum μ updated in step 5, and together with the σ 
suggested in step 2, we inferred the distribution for waste-to-energy 
generation monthly in Taiwan as plotted in red dotted curve in Fig. 6.

To find the confidence interval of 99% for waste-to-energy genera-
tion, we performed z-test again. Using minimum μ updated in step 5 
and σ suggested in step 2, we have

 298 1120 2 58 50
60

298 1120 2 58 50
60

. . . .
�

�
� � �

�generation  (24)

Therefore, (24) yielded

 281 4582 314 7658. .≤ ≤generation  (25)

Using maximum μ updated in step 5 and σ suggested in step 2, 
we have

 302 3938 2 58 50
60

302 3938 2 58 50
60

. . . .
�

�
� � �

�generation  (26)

Fig. 3. Assumed probability distribution for waste-to-energy 
generation.

Fig. 4. Prior distribution for μ.

Fig. 5. Prior and posterior distribution for μ.



Lin. Apply Bayesian Inference with Normal–Normal Conjugate to Forecast Renewable Energy Generation

5554

TEPES Vol 4., Issue. 2, 50-56, 2024

Therefore, (21) yielded

 285 7400 319 0476. .≤ ≤generation  (27)

According to (25) and (27), we concluded that the inferred distribu-
tion of waste-to-energy generation with a 99% confidence level was

 281 4582 319 0476. .≤ ≤generation  (28)

C. Tests
Recalled the assumed probability distribution was μ 367.5374 and 
σ 50. Again, by setting a 99% confidence interval in the z-test, the 
assumed probability distribution of waste-to-energy generation was

 367 5374 2 58 50
60

367 5374 2 58 50
60

. . . .
�

�
� � �

�generation  (29)

Therefore, the assumed distribution forecasted that, with 99% confi-
dence, the generation was within the interval

 350 8836 384 1912. .≤ ≤generation  (30)

While the inferred distribution forecasted that, with 99% confidence, 
the generation was within the interval

 302 3938 2 58 50
60

302 3938 2 58 50
60

. . . .
�

�
� � �

�generation  (31)

Table IV shows the unforeseen 10 data samples testified by assumed 
and inferred probability distributions. It can be seen that the 
assumed probability distribution failed for all unforeseen data sam-
ples, while the inferred probability distribution covers eight of the 
ten unforeseen data samples. The accuracy is 80%.

V. DISCUSSION
In this paper, the forecast was presented by a probability distribu-
tion. Using this probability distribution, we could forecast the gener-
ation with a certain confidence level within an interval. The forecast 
claimed that, with a 99% confidence level, the interval between 
281.4582 GWH and 319.0476 GWH could include the monthly gen-
eration of waste-to-energy in Taiwan.

If the confidence interval’s lower limit is set at 0 and higher limit at 
10 000 GWH, all forecast values shall fall within this interval, and 
one may claim a 100% success rate accordingly. However, such a 
100% successful forecast might be mistakenly interpreted. A higher 
confidence level leads to a wider interval, but it is less precise [22]. 
It is not informative, either. On the contrary, a lower confidence 
level leads to a smaller interval, but is more precise. It is more 
informative.

Although researchers may consider different confidence levels at 
will, in literature 95% and 99% are the most prevalent. A higher con-
fidence level is usually reserved for those situations where a false 
confidence interval might cause critical consequences. Accordingly, 
this paper considered a 99% confidence level.

VI. CONCLUSION
This paper applies Bayesian inference with normal–normal con-
jugate method to forecast intermittent renewable energy gen-
eration. An assumed probability distribution is initialized for 
renewable energy generation forecast. Bayesian inference with 
normal–normal conjugate method infers the probability distri-
bution. A case study of waste-to-energy renewable power gen-
eration in Taiwan is investigated. Numerical tests demonstrate 
that the inferred probability distribution has 80% accuracy. The 
inferred probability distribution outperforms the assumed coun-
terpart. The forecast accuracy might be improved further since 
the normal–normal conjugate method has to fix σ in advance. 
Therefore, if σ can be released and inferred as well as μ, the 
renewable energy generation forecast might be more accurate. 
In addition, the proposal is expected to be applicable to other 
intermittent renewable energy sources forecast. These will be the 
author’s future works.

Fig. 6. Assumed and inferred distributions for waste-to-energy 
generation.

TABLE IV. 
WASTE-TO-ENERGY GENERATION TEST BY ASSUMED AND 

INFERRED DISTRIBUTION

Date Generation (GWH) Assumed Inferred

01/2023 298.4644 X √

02/2023 284.8347 X √

03/20233 288.2910 X √

04/2023 262.6507 X √

05/2023 306.7749 X √

06/2023 297.2915 X √

07/2023 314.0844 X √

08/2023 304.9642 X √

09/2023 283.1953 X √

10/2023 265.9801 X √

X, failed; √, successful.
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