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ABSTRACT

In this study, an application for economic load dispatch of multi-microgrid systems has been solved by meta-heuristic methods such as particle swarm optimi-
zation and genetic algorithm. The solution to the economic dispatch problem should both provide the optimum cost schedule and satisfy the power system 
constraints. Multi-microgrid system in this study consists of four fuel-based power generation units and two microgrids with photovoltaic panels as renewable 
energy sources. Simulations were carried out in two case studies, with and without microgrids. While both proposed methods gave better results than the 
literature study, the best solution was presented by particle swarm optimization with $106583.7/day and $108395.3/day for the systems with and without 
microgrids, respectively. The simulation results show that both algorithms achieve optimum and reliable results. Multi-microgrids with renewable energy 
resources increase system reliability and power quality and decrease emissions, transmission losses, and operating costs.

Index terms—Economic load dispatch, genetic algorithm, multi-microgrids, particle swarm optimization, photovoltaics.

I. INTRODUCTION
Depending on the increasing population and developing technology, 
energy consumption is increasing steadily. Since large-scale power 
plants generally use fossil fuels, increasing energy consumption over 
the years has led to a significant decrease in fossil fuel reserves. In 
addition, concerns based on the increase in carbon emissions have 
made the renewable energy demand more important. In this case, 
distributed generation (DG) technology has significant importance 
and it allows the grid to take full advantage of renewable energy 
sources (RESs) [1, 2]. Renewable energy sources also reduce emis-
sions, improve power quality, and have high reliability and high effi-
ciency in resource access [1-3].

Since traditional power plants are far from residential and indus-
trial areas, huge power losses occur during energy transmission. 
Connecting the microgrids (MGs) to the distribution system or oper-
ating in an islanded mode eliminates this disadvantage. The afore-
mentioned MGs include DGs which are small-scale power generation 
units such as photovoltaic panels (PVs) and wind turbines [4-6].

Increasing energy demand increases the orientation toward RESs 
and gives more importance to economic load dispatch (ELD). The 

ELD problem (ELDP) basically aims to minimize the costs and has to 
meet the constraints of the system. The first of these constraints is to 
meet the demand. The second is that the generation power should 
be within the generator capacity limits [7].

There are many optimization methods to solve the ELDP. In addition 
to the classical optimization techniques, meta-heuristic methods 
are also used to solve these problems. Particle swarm optimiza-
tion (PSO) and genetic algorithm (GA) are the most preferred meta-
heuristic methods. Heuristic methods gain importance due to their 
advantages such as convenience in solving complex problems and 
short solution time.

Generic algorithm [1] and PSO [3] were used to ensure ELD of dis-
tribution system with two MGs. Authors in [5] proposed the corre-
sponding dynamic programming to ELD of MGs with a battery energy 
storage system. In [8], various types of ELDP were examined using 
PSO and classical evolutionary programming. Particle swarm optimi-
zation was proposed to ELD considering non-linear generator con-
straints [9]. Authors in [10] proposed that GA and PSO solve dynamic 
ELD with valve point effect. In [8], the decomposition and calculation 
model of the multi-MG (MMG) system was created and the ELDP 

2

2 DOI: 10.5152/tepes.2022.22008TEPES, Vol. 2, Issue. 2, 147-157, 2022

Received: January 31, 2022 
Accepted: April 18, 2022 

Publication Date: June 10, 2022

Corresponding author: Mikail Pürlü, purlu@itu.edu.tr

http://orcid.org/0000-0001-9659-359X
http://orcid.org/0000-0002-1194-3931
http://orcid.org/0000-0003-0922-8936
mailto:purlu@itu.edu.tr


Aydın et al. Heuristic Algorithms on Economic Dispatch of Multi-Microgrids with Photovoltaics

149148

TEPES Vol 2., Issue. 2, 147-157, 2022

was solved with the differential evolution method considering the 
transmission losses. The authors in [9] formulated the ELDP for MG 
and solved it using four methods such as lambda iteration, PSO, 
direct search method, and lambda logic. Authors in [10] proposed 
an advanced analytical target cascading theory-based decentralized 
autonomous dispatching model for an active distribution system 
with MMGs.

This study examines the ELDP of the MMG system. Multi-microgrid 
system has four fuel-based generators and two MGs containing PV. The 
PSO and GA algorithms are developed in matrix laboratory (MATLAB)  
to solve ELDP for both systems with and without MGs with PV.

The rest of this study is arranged as follows. In section II, the math-
ematical expression of the ELDP is introduced. In section III, defini-
tions, implementation steps, and parameter settings of the proposed 
algorithms are given. In section IV, the application and simulation 
results are presented. Finally, the conclusion part is provided in sec-
tion V.

II. PROBLEM FORMULATION
A. Objective Function
Economic load dispatch operation minimizes the total operating cost 
of the system [6]. The total generation cost of generators and MGs 
can be expressed in (1) and (2), respectively.
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where FG is the total generation cost of generators [$/h]; Pi is the 
real power output of ith generation unit [MW]; ai, bi, and ci are the 

fuel cost coefficients of the ith generation unit [$/(MW)2h, $MW/h, 
$/h]; N is the number of generation units of the system; FMG is gen-
eration cost of MGs [$/h]; δj is selling or buying price of jth MG [$]; 
PMGj is the real power output of jth MG [MW]; n is the number of 
MGs.

If PMGj has positive value, the jth MG supplies real power to the grid 
and that means δj is the selling price of MGj. If PMGj has negative 
value, the jth MG gets real power from the grid and that means δj is 
the buying price of MGj [1].

The total generation cost of the MMG system (FMMG [$/h]) is the 
sum of the costs of generators and MGs and it can be expressed as 
follows:

 F F FMMG G MG� �  (3)

B. Problem Constraints
The power balance of the power system is a major constraint and it 
can be expressed as follows:
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where PD is total load demand [MW].

Each generator and also MG have generation limits and their power 
output should be within these limits. The capacity constraints of gen-
erators and MGs can be expressed as follows:

 P P PGi
min

Gi Gi
max≤ ≤  (5)

 P P PMGj
min

MGj MGj
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where PGimin  and PGimax  are the lower and upper limits of the ith gen-
eration unit [MW] and PMGj

min  and PMGj
max  are the lower and upper limits 

of the jth MG [MW].

C. Characteristics of MGs
Microgrids can be both consumer and producer. The power outputs 
of MGs are variable and unstable due to the uncertainties of RES. 
Therefore, the power output of MGs can be in both negative and pos-
itive values. A positive value means that it operates as an energy gen-
eration source, and a negative value means that it operates as a load.

Microgrids have controllable and uncontrollable power output, and 
both must be considered in ELDP. Equations (7) and (8) indicate the 
minimum and maximum power outputs of MGs.
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Main Points

• Proposed heuristic methods, such as genetic algorithm (GA) 
and particle swarm optimization (PSO), have been used in 
the application of economic dispatch problem to both sys-
tems, with and without microgrids (MGs).

• Proposed heuristic methods obtained more economical 
results for MMGs systems, especially with PSO.

• Proposed heuristic methods provided an environmental con-
tribution by reducing carbon emissions, as well as technical 
contributions such as reducing transmission losses and fuel 
costs by using renewable energy-based MGs.

• Proposed heuristic methods validated the robustness and 
effectiveness of proposed algorithms by the literature 
comparison.

• As future work, the dependency on fuel-based generators 
can be reduced and the reliability of the system can be 
increased by adding a storage system or different renewable 
energy sources.
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where PMGj
max  : maximum power output of MGs [MW]; PSjmax  : maxi-

mum power output of controllable DGs [MW]; Pusj  : forecast power 
output of uncontrollable DGs [MW]; Pdj  : the load of MGs [MW]; PMGj

min  
: minimum power output of MGs [MW]; PSjmin  : minimum power out-
put of controllable DGs [MW].

III. OVERVIEW OF THE PROPOSED METHODS
A. Particle Swarm Optimization
The PSO algorithm inspired by the social behavior of bird and 
fish packs is a population-based heuristic optimization tech-
nique developed by Dr. Eberhart and Dr. Kennedy in 1995 [11]. 
It is developed for solving non-linear problems and is used to 
find solutions to multi-parameter and multivariate optimization 
problems [12]. Individuals in the bird or fish herd have a simple 
behavior of reaching the food by following the movements of the 
herd, and this movement can be mathematically defined as the 
discovery of optimal areas in a search space [13]. Based on this 
simple behavior, in the PSO algorithm, individuals in the swarm 
are identified as particles and are released at random positions 
in the search area. Particles tend to change positions, influenced 
by the successful movements of other members of the swarm. By 
reason of this interaction, PSO exhibits a symbiotic behavior fea-
ture. As a result of this social behavior, particles present a random 
movement toward previously found optimal results in the search 
space [14].

In PSO algorithm, a swarm of particles is assumed to move in a 
search space to minimize the problem’s objective function [15]. 
Each particle is defined by its position and velocity vectors [3]. xi 
describes the current position of the particle and vi describes the 
current velocity of the particle. These two vectors for each iteration 
are defined in (9) and (10). In every iteration, position and veloc-
ity vectors are updated according to two parameters. One of these 
parameters is the best solution that a particle has received so far 
and it is called pbesti. The other one is the particle value that gives the 
best solution obtained by all particles so far in the entire population 
and it is called gbesti. Each particle’s velocity and position vectors are 

updated according to (11) and (12). The vectoral path followed by 
each particle is illustrated in Fig. 1.
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Fig. 1. The vectoral path of each particles [3].

Fig. 2. Flowchart of PSO [16]. PSO, particle swarm optimization.

Fig. 3. Flowchart of GA [23]. GA, generic algorithm.
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where vik+1 : velocity of ith particle in (k+1)th iteration; vik : velocity 
of ith particle in kth iteration;W: inertia weight;C1, C2: acceleration 
constant;r1, r1: uniform random value; pbestk

i : ith particle’s best solu-
tion in kth iteration; gbestk

i : best solution of all particles in kth itera-
tion; xik : position of ith particle in kth iteration; xik+1 : position of ith 
particle in (k+1)th iteration.

Acceleration constants are usually chosen as equal and 2 but [0, 4] 
is the general range for this quantity [12, 16]. The inertia weight can 
be defined as follows:

 w k w w w
K

kmax
max min� � � �

��
�
�

�
�
��  (13)

where Wmax is maximum inertia weight; Wmin is minimum iner-
tia weight; K is the number of iterations; K is the current iteration 
number.

The standard flowchart of PSO is shown in Fig. 2 [16].

B. Genetic Algorithm
The GA is an iterative evolution-based algorithm that searches 
for the best solution in a complex multi-dimensional search space 
according to the survival of the fittest principle. Generic algorith 
which is inspired by Darwin’s evolution theory was developed by 
John Holland in 1975 [17, 18]. In GA, the birth, reproduction, and 
extinction of individuals by natural selection are simulated [19].

Genetic algorithm creates a solution set consisting of independent 
solutions, each of which is a vector on a multidimensional space. In 
this way, the probability of reaching a solution by evaluating a sin-
gle point increases [20, 21]. Besides, it has an advantage with the 

variety of solutions it provides and its application to multivariate 
problems [21].

The GA modifies the population iteratively. In each iteration, new 
individuals are created by randomly selecting individuals and a new 
generation emerges. This process continues until the maximum num-
ber of iterations is reached and the optimum result is obtained. Firstly, 
for the implementation of algorithm, a random population is created. 
Each individual in a population is called as a chromosome. Each chro-
mosome in a population represents possible solution and has a fit-
ness value [22]. This value was calculated for each individual with the 
fitness function. The chromosome with the best fitness value gives 
the most optimal result. Equation (1) indicates the fitness function.

 F x
f x

� � �
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1
1

 (14)

where F(x) is fitness function and f(x) is the cost function. F(x) ranges 
from 0 to 1. As F(x) gets closer to 1, the probability of an individual 
being transferred to the next generation increases [17, 18].

After the population is created, a new population is produced from 
this population by means of genetic operators. These genetic opera-
tors are selection, crossover, and mutation:

Selection: Roulette wheel technique is generally used for this pro-
cess. Selection is made according to the fitness values of the indi-
viduals. The selected individuals are called parents.

Crossover: New individuals are created from the selected parents 
via the crossover operator. The crossover rate is considered when 
considering this process.

Mutation: After the crossover operation, new individuals are ran-
domly mutated. The mutation rate is considered when considering 
this process.

The schematic flowchart of GA is given in Fig. 3 [23].

C. Implementation of the Proposed Algorithms on ELDP
Implementation steps of PSO on ELDP are given as follows [24]:

Step 1: PSO parameters (number of particles, iteration number, Wmin, 
Wmax, C1, C2) and system data ( PGimin , PGimax , ai, bi, ci, PD) are defined.

TABLE I. 
PSO PARAMETERS

PSO Parameter Value

Number of particles 50

Maximum iteration 50

Acceleration constants: C1=C2 2

Inertia weights: Wmin & Wmax 0.1 and 0.9

PSO, particle swarm optimization.

TABLE II. 
GA PARAMETERS

Parameter Value

Population size 50

Maximum iteration 50

Crossover rate 0.8

Mutation rate 0.1

GA, generic algorithm.

TABLE III. 
GENERATOR PARAMETERS

Parameters G1 G2 G3 G5

ai 0.168 0.168 0.505 0.674

bi 21.05 16.8 12.63 27.39

ci 40 40 30 30

PGimin 20 10 10 10

PGimax 80 55 55 55
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Step 2: Particles of the swarm are generated randomly by using (15):

 P P rand P Pi i
min

i
max

i
min� � � �� �  (15)

where Pi is the power output [MW] and Pimin  and Pimax  are genera-
tion limits [MW]

Step 3: It is evaluated whether the generation power meets the 
demand and whether it is within the generation limits. When the 
number of particles that meet these constraints reaches the desired 
number, the next step is started.

Step 4: pbesti and gbesti are determined.

Fig. 4. Daily load.

Fig. 5. Single-line diagram of the system.
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Step 5: The iteration is started and the inertia weight is calculated 
according to (13). In each iteration, velocity and positions of particles 
are updated according to (11) and (12).

Step 6: pbesti and gbesti are updated.

Step 7: When the maximum number of iterations is reached, 
the algorithm is stopped and the optimum solution results are 
obtained.

Implementation steps of GA on ELDP are given as follows:

Fig. 6. Forecast PV power output and daily load of MG1 [1]. PV, photovoltaic; MG1, microgrid1. 

Fig. 7. Forecast PV power output and daily load of MG2 [1]. PV, photovoltaic; MG2, microgrid2.
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Step 1: GA parameters (population size, crossover rate, mutation 
rate, iteration number) and system data ( PGimin , PGimax , ai, bi, ci, PD) are 
defined.

Step 2: Chromosomes are randomly generated by using (15).

Step 3: When the number of chromosomes satisfying the system 
constraints is reached, the fitness value for each chromosome is cal-
culated using (14).

Step 4: The roulette wheel selection is applied and the parents are 
selected randomly.

Step 5: Crossover and mutation operations are applied.

Step 6: The fitness value is calculated for the chromosomes in the 
new generation and the next iteration is passed.

Step 7: When the stopping criteria (max. iteration number) is met, 
the algorithm is stopped and the optimum results are obtained.

D. Parameter Settings
Partilce swarm optimization and GA parameters used in this 
study to optimize ELD problem are given in Table 1 and Table 2, 
respectively.

TABLE IV. 
POWER DISPATCH FOR THE SYSTEMS WITH MGS AND WITHOUT MG BY USING PSO

Hour

Power System Without MG Power System With MGs

G1 [MW] G2 [MW] G3 [MW] G4 [MW] G1 [MW] G2 [MW] G3 [MW] G4 [MW] MG1 [MW] MG2 [MW]

1 31.30 43.95 18.75 30.99 29.73 42.38 18.23 27.06 5.3 2.3

2 29.23 41.88 18.06 25.82 29.23 41.88 18.06 25.82 1 -1

3 27.99 40.63 17.65 22.72 28.63 41.28 17.86 24.33 -1.8 -1.3

4 26.95 39.60 17.30 20.14 27.94 40.59 17.63 22.62 -1.4 -3.4

5 27.16 39.81 17.37 20.66 28.21 40.86 17.72 23.29 -0.6 -4.5

6 28.40 41.05 17.78 23.76 28.92 41.57 17.96 25.05 2.5 -5

7 30.89 43.54 18.61 29.96 29.66 42.31 18.21 26.91 5.9 0

8 31.72 44.36 18.89 32.02 27.28 39.93 17.41 20.97 15.5 5

9 33.58 46.23 19.51 36.67 28.69 41.34 17.88 24.48 16.3 7.3

10 37.73 50.37 20.89 47 31.38 44.03 18.78 31.20 14.5 16.1

11 41.16 53.81 22.03 55 34.29 46.93 19.74 38.43 15.6 17

12 44.76 55 23.23 55 35.96 48.61 20.30 42.61 14.8 15.7

13 55.27 55 26.72 55 40.34 52.99 21.76 53.51 6.9 16.5

14 56.02 55 26.97 55 41.29 53.93 22.07 55 0.7 20

15 59.77 55 28.22 55 47.69 55 24.20 55 3.8 12.3

16 65.02 55 29.97 55 50.77 55 25.22 55 2.3 16.7

17 65.77 55 30.22 55 62.62 55 29.17 55 0 4.2

18 62.77 55 29.22 55 55.19 55 26.70 55 2.4 7.7

19 57.52 55 27.47 55 51.07 55 25.32 55 2.7 5.9

20 50.01 55 24.98 55 42.81 55 22.58 55 4.2 5.4

21 56.77 55 27.22 55 59.47 55 28.12 55 -1.8 -1.8

22 47.76 55 24.23 55 47.84 55 24.25 55 -1.8 1.7

23 35.65 48.30 20.20 41.84 36.32 48.97 20.42 43.49 -1 -2.2

24 35.45 48.09 20.13 41.32 32.59 45.24 19.18 34.19 6 7.8

PSO, particle swarm optimization; MG, microgrid.
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IV. SIMULATION RESULTS AND DISCUSSION
The MMG system used in this study consists of two MGs including 
RESs and four fuel-based units of generator sets. Generator param-
eters and daily load profile of the system are given in Table 3 and 
Fig. 4, respectively [1]. The single-line diagram of the MMG system 
is given in Fig. 5.

As the MG1 and MG2 are solar-based DGs, their power output is 
not indefinite. Therefore, just like in local daily load, power outputs 
should be estimated according to historical and environmental fac-
tors. Since the MGs contain PVs, MG1 provides power to the system 
in periods 6.00–17.00 and MG2 in periods 7.00–18.00.

The controllable DG power output capacity of MG1 is 12 MW, while 
the output capacity of MG2 is 20 MW. The forecast PV power output 
and daily local load curve for MG1 and MG2 are given in Fig. 6 and 
Fig. 7, respectively.

Microgrids should primarily meet local load. If the generation 
power of the MG cannot meet their local load, the lack of power 
amount is supplied from the system. If the MG generates more 
power than its local load, excess power is supplied to the sys-
tem. Microgrid1’s selling price is $27/MW and MG2’s selling price 
is $28/MW. Likewise, the buying price of both MGs is equal to 
$22/MW.

TABLE V. 
POWER DISPATCH FOR THE SYSTEMS WITH MGS AND WITHOUT MG BY USING GA

Hour

Power System Without MG Power System With MGs

G1 [MW] G2 [MW] G3 [MW] G4 [MW] G1 [MW] G2 [MW] G3 [MW] G4 [MW] MG1 [MW] MG2 [MW]

1 31.35 43.77 18.77 31.12 29.78 42.20 18.24 27.19 5.3 2.3

2 29.28 41.70 18.08 25.94 29.28 41.70 18.08 25.94 1 -1

3 28.03 40.47 17.66 22.84 28.68 41.11 17.88 24.45 -1.8 -1.3

4 26.99 39.43 17.32 20.26 27.99 40.43 17.65 22.74 -1.4 -3.4

5 27.20 39.64 17.39 20.77 28.26 40.69 17.74 23.41 -0.6 -4.5

6 28.45 40.88 17.80 23.88 28.97 41.39 17.97 25.17 2.5 -5

7 30.94 43.35 18.63 30.08 29.71 42.14 18.22 27.03 5.9 0

8 31.77 44.18 18.91 32.15 27.33 39.76 17.43 21.09 15,5 5,9

9 33.64 46.04 19.53 36.81 28.74 41.17 17.90 24.60 16.3 7.3

10 37.78 50.16 20.91 47.15 31.44 43.85 18.79 31.32 14.5 16.1

11 41.29 53.65 22.07 55 34.34 46.74 19.76 38.56 15.6 17

12 44.78 55 23.23 55 36.02 48.41 20.32 42.75 14.8 15.7

13 55.27 55 26.72 55 40.40 52.76 21.78 53.66 6.9 16.5

14 56.02 55 26.97 55 41.41 53.77 22.11 55 0.7 20

15 59.78 55 28.22 55 47.70 55 24.21 55 3.8 12.3

16 65.03 55 29.97 55 50.77 55 25.23 55 2.3 16.7

17 65.78 55 30.22 55 62.63 55 29.17 55 0 4.2

18 62.78 55 29.22 55 55.20 55 26.70 55 2.4 7.7

19 57.53 55 27.47 55 51.07 55 25.33 55 2.7 5.9

20 50.03 55 24.98 55 42.82 55 22.58 55 4.2 5.4

21 56.78 55 27.22 55 59.48 55 28.12 55 -1.8 -1.8

22 47.77 55 24.23 55 47.85 55 24.26 55 -1.8 1.7

23 35.71 48.10 20.22 41.97 36.37 48.76 20.44 43.63 -1 -2.2

24 35.50 47.89 20.15 41.45 32.64 45.05 19.19 34.32 6 7.8

MG, microgrid; GA, generic algorithm.
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Tables 4 and 5 show the economic dispatch results of the system 
with and without MGs by PSO and GA, respectively. Hourly opti-
mal costs of the system both with and without MGs are illustrated 
graphically in Fig. 8 for PSO and Fig. 9 for GA. The total costs have 

been obtained as $108395.3/day in the system without MG and as 
$106583.7/day in the system with MGs by PSO and $108456.6/day 
and $106642.9/day by GA. It is clearly seen that MMG-containing 
RES provides economic benefits.

Fig. 8. Optimal costs in 24 hours by PSO. PSO, particle swarm optimization.

Fig. 9. Optimal costs in 24 hours by GA. GA, generic algorithm.
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It is seen clearly from the comparison of Fig. 8 and Fig. 9 that the 
inclusion of MGs resulted in a reduction in cost. From 12:00 to 
18:00 hours, when is the most efficient interval of PVs, the total 
cost difference between with MGs and without MGs is the greatest. 
Even if in the night time, the difference is great. The reason is that 
the MGs are insufficient to meet local loads during these hours, so 
power should be purchased from the system. It is normal for this dif-
ference to occur when the purchase cost is considered.

The comparison of the proposed algorithms in this study and GA 
in [1] is shown in Fig. 10.

VI. CONCLUSIONS
The inclusion of MGs including RES in distribution systems is one 
of the most effective factors in the near future. Renewable energy-
based MGs increase power quality and efficiency while reducing 
transmission line losses and carbon emissions.

In this study, the ELDP of an MMG system with two MGs including 
PV and four fuel-based generators is approached by using PSO and 
GA algorithms, and the total fuel cost is calculated as $106583.7/day 
and $106642.9/day, respectively. When MGs are neglected, the total 
cost is calculated as $108395.3/day for PSO method and $108456.6/
day for GA. The inclusion of MGs including RES resulted in a cost 
reduction of approximately $1800/day. Optimal, reliable, and close 
results were obtained in both methods. Also, these results are better 
than the study in the literature. Since GA algorithm has more com-
plex structure in practice, its calculation process is longer than that 
of PSO.

Multi-microgrid systems including PV provided a significant reduc-
tion in total operation cost. Besides the other advantages, MMG 
system with PV reduces the load dispatching on the fuel-based 
generators and provides a significant reduction in fuel costs and 
emissions.
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