
Deep Neural Network Implementation for Appliances Identification by Using Current and Voltage 
Signatures

Güven.

RESEARCH ARTICLE

Deep Neural Network Implementation for Appliances Identification 
by Using Current and Voltage Signatures

Yılmaz Güven
Department of Electronics and Automation, Kırklareli University Vocational Technical School, Kırklareli, Türkiye

Cite this article as: Y. Güven, “Deep neural network implementation for appliances identification by using current and voltage signatures,” Turk J Electr 
Power Energy Syst., 2025; 5(1), 19-29.

ABSTRACT

The PLAID database was published earlier last year and contains many households’ devices and appliances with numerous high-frequency measurements at 
different locations. In this paper, the researchers extracted features such as peak to peak, peak to root mean square, minimum, maximum, mean, median value, 
standard deviation, phase angle, active and reactive power from these current and voltage signals. A multi-layered and SoftMax back-propagated artificial deep 
neural network (DNN) has been trained and tested with these data. Batch normalization has been used to optimize the DNN. Different architectures, activa-
tion functions, and training algorithms have been tried out to get the best results. Then this method was implemented within a low-cost embedded system 
to identify appliances by using their current and voltage signature. This device provides an identification method using only one sensor within an embedded 
system, and accuracy of the DNN is slightly better than studies which use the same dataset. On the other hand, deploying trained neural networks on an 
embedded system can be tricky and overwhelming. This paper also demonstrated that using open standards for machine learning makes these processes and 
gives interoperability.

Index Terms—Deep learning, embedded system, intelligent measurement, smart grid, smart home

I. INTRODUCTION
Nowadays, everything is about artificial intelligence because 
of the accumulated data in recent years. Almost every device 
used in daily life, such as laptops, smart TVs, cars and household 
appliances, are getting smarter every day. Smart grids and smart 
buildings are crucial because of the indispensability of electrical 
energy. In the near future, electric vehicles are also expected to 
become part of our smart homes. Therefore, smart metering and 
monitoring will be required for every energy-consuming device.

Nevertheless, an uncomplicated and effective method should 
detect these devices over powerlines without extra equipment. For 
this reason, researchers have focused on this identification prob-
lem using only the voltage and current signatures of the device. 
Developments in artificial intelligence technologies have increased 
the accuracy of identification problems. Machine learning (ML) 
techniques such as artificial neural networks (ANNs) have achieved 
good results with the help of some optimization and data pre-pro-
cessing techniques.

This study has focused on creating an effective deep neural network 
(DNN) to identify a home appliance using only voltage and current 
measurement data. Although there are many datasets related to this 
subject, we have used the Plug-Load Appliance Identification Dataset 
(PLAID) [1] for this study because of its high frequency measurement 
and variety of appliances and measurement locations. Table 1 shows 
other populer appliance datasets such as Controlled on/off Loads 
Library (COOLL) [2], Appliance Consumption Signatures (ACS-F2) [3], 
United Kingdom Domestic Appliance-Level Electricity (UK-DALE) [4], 
Retrofit Electrical Load Measurements (REFIT) [5], and The Reference 
Energy Disaggregation Data (REDD) [6]. 

Previous studies have shown that recognition and identification 
problems can be solved using ML and ANNs. A non-intrusive moni-
toring methodology [7] with a feed-forward neural network has 
reached an 83.88% correct classification rate by using the ACS-F2 
database. Real-time recognition through a single sensor [8] has 
achieved an 84% accuracy rate with a shallow ANN. In [9], a Hidden 
Markov Model was used for appliance and state recognition with 
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accuracy rates between 90% and 94%. In a study on Appliance identi-
fication for different electrical signatures [10] has achieved relatively 
better accuracy by using some ML algorithms and the moving aver-
age method. 

All these studies cover conventional ML methods, and they need to 
be progressed to the next level. Deep learning (DL) is a new, pow-
erful approach to artificial intelligence technologies. While classical 
ANNs have fully connected nodes with few layers, a DNN can have 
many connected or independent nodes and layers. Multilayer per-
ceptron, deep belief network (DBN), DNN, convolutional neural net-
work (CNN), recurrent neural network (RNN), and time-delay neural 
network are some of the DL models [11]. 

Signal signature and pattern recognition are being used in many dif-
ferent areas. Automatic arrhythmia diagnosis with Electrocardiogram 
(ECG) signals [12], real-time detection of signal patterns via multi-
channel spatiotemporal sensor array [13], power quality classifica-
tion [14], frequency signature tracking [15], fault classification in 
power electronic circuits [16], and fault analysis in transmission lines 
[17] are some of the many signal signature and pattern recognition. 

This study has focused on building an effective new method for appli-
ance identification using voltage and current signal signatures. The 
extracted features from these signals have been normalized with Batch 
Normalization (BN) to optimize the DNN. SoftMax back-propagation 
with cross-entropy has been used to get the best training results.

The voltage and current signals have been separated into train and 
test data with a 50% ratio to get minimum validation error. 

A brief comparison of performance has also been presented in the 
results section with the real-time implementation of the method 
within a low-cost embedded system. There are some prototype 

systems related to this study such as smart energy management with 
forecasting and load strategy for renewable systems [18], consumer 
load measurement for automated buildings [19], and low voltage 
smart meters for power quality disturbance [20].

This study demonstrates that DNNs can achieve high performance 
in low-cost embedded systems using specialized techniques. Using 
open exchange standards to deploy trained networks makes it better 
for hardware and software compatibility.

II. METHODOLOGY
DL is a rapidly developing method for solving many different prob-
lems. Soft sensor data can be compared to detect hazardous gases 
using a DBN [21]. Recurrent neural networks can detect acoustic 
anomalies without a clean sample [22]. Besides, DL methods are 
being started to be used for electrical load monitoring and plan-
ning for Nonintrusive load monitoring (NILM) applications [23]. 
Convolutional neural networks were first designed for feature 
extraction and image classification [24], then these methods have 
been applied to many different problems such as detection of point-
ers in analog meter display [25] and intelligent fault diagnosis [26].

The PLAID dataset has 1876 individual measurements of 16 different 
appliances such as air conditioners, coffee maker, refrigerator, heater, 
vacuum cleaners, washing machine, etc. These measurements have 
been sampled at 30 kHz. Root mean square (RMS) voltage values 
vary between 110V and 130V because of voltage differences in the 
United States of America (USA). 

The current values also vary between 0 and 20A depending on 
appliance type. These devices are labeled with identifying numbers 
between 1-16. Some appliances have nonlinear load characteristics 
while others have inductive or resistive load characteristics. On the 
other hand, physically different types of appliances from different 
brands have been used for measurement. The summary of the appli-
ances can be seen in Table II.

A. Feature Extraction
The voltage and current signatures have been recorded at high 
frequency for better feature extraction. The difference in current 
signatures is obvious, as it can be seen in Fig. 1. However, voltage 

Main Points

• Intelligent measurement system for smart grids.
• Low-cost embedded artificial intelligence device.
• Appliance recognition by using voltage and current signa-

tures: deep neural network implementation.

TABLE I. 
SPECIFICATION OF VARIOUS DATABASE

Database Specifications

PLAID[1] 17 different appliances with voltage and current measurements from 65 different locations such as offices, homes, and 
schools at 30 kHz sampling rate

COOLL[2] 12 different appliances with voltage and current measurement in a laboratory environment at 100 kHz sampling rate

ACS-F2[3] 15 appliances with power parameters in laboratory environment at .1 Hz sampling rate

UK-DALE[4] 7 applications with consumption data from 5 houses at 16 kHz sampling rate

REFIT[5] 18 applications with power parameters from 20 Houses at 10 kHz sampling rate

REDD[6] 8 appliances with power and frequency measurement from 6 houses at a 15 kHz sampling rate
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signatures of appliances look the same to the naked eye as can be 
seen in Fig. 2. Therefore, we have extracted some distinguishing fea-
tures such as peak to peak, peak to RMS (1), minimum and maxi-
mum values, mean (2), median, and standard deviation (3) [27]. All 
extracted features can be seen in Table III.
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Where x is the input value, n is the sequence number of the data, xrms 
is RMS, and  ̅x is mean value.

TABLE II. 
SUMMARY OF THE APPLIANCES IN PLAID

ID Appliance Load Number of Measurement

1 Air conditioner Nonlinear 204

2 Blender Inductive 2

3 Coffeemaker Resistive 10

4 Compact fluorescent Nonlinear 230

5 Fan Inductive 220

6 Refrigerator Inductive 108

7 Hairdryer Resistive 246

8 Hair iron Nonlinear 10

9 Heater Resistive 85

10 Incandescent light Resistive 157

11 Laptop Nonlinear 216

12 Microwave oven Nonlinear 200

13 Soldering iron Nonlinear 20

14 Vacuum cleaner Inductive 83

15 Washing machine Nonlinear 75

16 Water kettle Resistive 10

Fig. 1. Current signatures of different appliances.

Fig. 2. Voltage signatures of different appliances.

TABLE III. 
EXTRACTED FEATURES

Current Voltage Power

Input Value Input Value Input Value

X1 Peak to peak X10 Peak to Peak X19 Phase angle

X2 Peak to RMS X11 Peak to RMS X20 cosφ

X3 IRMS X12 VRMS X21 sinφ

X4 Minimum X13 Minimum X22 Active power

X5 Maximum X14 Maximum X23 Reactive power

X6 Median X15 Median X24 Apparent Power

X7 Mean X16 Mean

X8 Standard 
deviation

X17 Standard 
deviation

X9 RMS level X18 RMS level
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Additionally, we have derived some power parameters by using volt-
age and current measurements. Phase difference between voltage 
and current (4), active power (5), reactive power (6), apparent power 
(7), and active and reactive power factor (8) can be calculated as 
follows:

 � � 360. .f t�  (4)

 P V I cosRMS RMS� . . �  (5)

 Q V I sinRMS RMS� . . �  (6)

 S P Q V IRMS RMS� � �2 2 .  (7)

 cos P
S

sin Q
S

� �� �� � � � � � � � � �  (8)

Where φ is the angle between voltage and current, f is the system 
frequency, Δt is the time delay between signals, P is active power, Q 
is reactive power, and S apparent power.

B. Deep Neural Network
As stated in Table III, extracted features are very different from 
each other. They have different ranges and values. BN was used 
for for both normalization and optimization. Batch Normalization 
also optimizes the values of all hidden layers along with input 
values. Layer optimization is crucial for DNN because there are 
many intermediate layers within the deep network [28]. BN takes 
mini-batches (9) rather than using all of the data for optimization. 
This way, it accelerates training and reduces calculation costs by 
using different normalizaiton terms (10) for each layer (11). Batch 
Normalization also helps to reduce the internal covariate shift, 
which is the change of network parameters during training [29]. 
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As can be seen from (12), BN is not an independent process. It 
depends on both training results and other mini batches.

 �
�

�
�
�

 
�x yi i

�  (13)

 �
�

�
�
�

�� � �� �
�

�� 
��

�
B i

m

i
i B B

x
x µ

1

3
2

1
2

  (14)

The normalized and shifted values are passed to the other layers 
according to the chain rule (13) and gradient loss can be calculated 

through equations (14). The distribution xi�  varies between 0 and 1, 
and each normalized activation is an input to the next layer.
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The gradient of loss l must be back-propagated during the training 
according to the chain rule (15), (16). This means BN is a differen-
tiable transformation of normalized activation between layers [30].
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This way model can continue learning on input distribution (17) with 
less internal covariate shift (18). Where μB is the mini-batch mean, ρB 
is batch variance, xi�  is the normalized value, and yi scale and shift, 
and γ and β are learning parameters. 

The back-propagation on DNNs is difficult because of discrete 
variables and layers. SoftMax transformation is being widely 
used in neural networks for multi-class classification because of 
its simplicity and differentiability [31]. The cross-entropy error 
(19) and SoftMax function (20) update all neurons in the previous 
layer (21).
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Where t is the target, y is the output value, x is the input for the next 
neuron, w is the weight, and b is bias.

Multiclassification tasks require SoftMax output, which provides 
distributional prediction result according to all classes. The partial 
derivative of the error function for the input layer (22) and hidden 
layers (23) updates related weights according to the chain rule as can 
be seen below [32].
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Deep learning is a ML method with a deep multi-layered architec-
ture. Earlier neural networks were shallow networks with fewer lay-
ers and limited data utilization. However, recent developments in 
computational and algorithmic advances have removed the limita-
tions [33-34].

Design of DNNs is relatively difficult due to their complexity and 
computational load. There are many parameters to be considered 
such as accuracy, memory usage, calculation count, training time, 
and power consumption. Deep neural networks are complex non-
linear functions, so it is hard to understand how they work as they 
combine many methods. Although their internal transparency is low, 
many different DNNs are being used for various tasks like speech rec-
ognition and image classification.

A typical DNN architecture contains many nodes and layers as seen 
in Fig. 3. Despite the simplicity of classical shallow neural networks, 
DNNs used to have some limitations such as the normalization prob-
lem, calculation cost, and back-propagation. Recent developments in 
DL have overcome these limitations.

Therefore, a DNN which normalizes data with BN between layers and 
back-propagated cross-entropy error with SoftMax function has been 
modelled. The hard tangent function has been used for forward acti-
vation because of its low computational cost. Back-propagation and 
activation functions are really important issues for DNN to achieve 
the best results.

C. Hardware Implementation
Embedded systems have three layers. The first one is the analog 
measurement layer, which does all analog measurement via a hall-
effect sensor. Then an active filter and current voltage converter 
board pass analog voltage and current data to the second layer. This 
layer includes a 32-bit ARM Cortex-M3 microcontroller with 84 MHz 
clock speed, featuring an onboard 12-bit Analogue-Digital Converter 
(ADC) and Digital-Analogue Converter (DAC). The third layer is a 
Compute Unified Device Architecture (CUDA)-enabled embedded 
computer for artificial intelligence applications. This single board 
computer has a quad-core ARM Cortex-A57 CPU and Nvidia Maxwell 
architecture with 128 CUDA cores GPU as computing units, along 
with 64-bit 4GB onboard LPDDR4 memory. 

Software Pseudocode is as follows:

Loop:

Serial communication → start listening; 

Get node identification → NODE;

Start → ADC;

While the ADC timer is on:

ADC →

12-bit 1 kHz;

Get samples → V[n], A[n], n=4096; 

End // Features Extraction

Calculate features → X1, X2, X3, X4, X5, X6, X7, X8, X9;

// Peak, RMS, Min, Max, Median, Mean, Deviation for current

Calculate features → X10, X11, X12, X13, X14, X15, X16, X17, X18;

// Peak, RMS, Min, Max, Median, Mean, Deviation for voltage

Calculate features → X19, X20, X21, X22, X23, X24;

// Phase angle, power factor, active, reactive and apparent 
power

// Deep Neural Network

Import batch parameters → batch_gamma[24], batch_
beta[24], momentum;

Calculate → batch_mean[24], batch_var[24];

Reshape and Normalize → Xn [24] = (Xn [24] *batch_mean[24])/
(sqrt(batch_var)) *batch_gamma[24] +batch_beta[24];

Import first layer weights and biases → weight1[24:64], 
bias1[64];

Calculate output → first_layer[64] = Xn[24] * 
weight1[24:64] + bias1[64]; 

Activation → out1[64] = max(-1, min(1, first_layer[64]));

Import second layer weights and biases → weight2[64:128], 
bias2[128];

Calculate output → second_layer[64] = out1[64] * 
weight2[64:128] + bias2[128];

Activation → out2[128] = max (-1, min (1, second_layer 
[128]));

Import Third layer weights and bias → weight3[128:256], 
bias3[256];

Calculate output → third_layer[256] = out2[128] * 
weight3[128:256] + bias3[256];

Fig. 3. A typical deep neural network. 
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Activation → out3[256] = max (-1, min (1, third_layer[256]));

Import Fourth Layer weights and bias → weight4[256:128], 
bias4[128];

Calculate output → fourth_layer[128] = out3[256] * 
weight4[256:128] + bias4[128] ;

Activation → out4[128] = max (-1, min (1, fourth_layer [128]));

Import Fifth Layer weights and bias → weight5[128:64], 
bias5[64];

Calculate output → fifth_layer[64] = out4[128] * 
weight5[128:64] + bias5[64]; To: Calculate output → fifth_
layer[64] = out4[128] * weight5[128:64] + bias5[64];

Activation → out5[64] = max (-1, min (1, fifth_layer [64]));

Import Sixth Layer weights and bias → weight6[64:16], 
bias6[16];

Calculate output → sixth_layer[16] = out5[64] * 
weight6[64:16] + bias6[16];

Activation → out6[16] = (exp(sixth_layer[16])/
sum(exp(sixth_layer[16]));

Classification → PERCENT [index] = max(out6[16]);

All Results → Print (ID [16], Percent [16]); 

Device info → Print (NODE, LABEL, ID, PERCENT);

End

Hall effect sensor is a current sensor, but it gives voltage output 
for use with ADC. Operational-Amplifier (Op-amp) can convert cur-
rent into voltage and vice versa. This analog data has been sampled 
and digitized on Arduino for feature extraction. After that, these 
features have been transferred to Jetson Nano for DNN. The pre-
trained DNN has been transferred to Jetson Nano by using the 
Open Neural Network Exchange (ONNX) model and Python librar-
ies. Results can be logged on the device or sent to another system 
via the Internet. An embedded display can also be used for real-
time monitoring.

The block diagram of the DNN used for appliance identification using 
voltage and current signal signatures can be seen in Fig. 4. ONNX 
model is also provided, which is useful for hardware implementa-
tion. The pseudocode of the software is also given below. Hardware 
layers of the embedded system can be seen in Fig. 5.

III. RESULTS
The implanted DNN has been tested with the PLAID dataset and a 
comparison of different architectures can be seen in Table IV. We 
have used Neural Network Console [35] on a PC with a 4.2 GHz 
8-core processor and 16 GB 3200 MHz RAM with GPU with 1920 
CUDA cores. This console is powered by Python neural network 
libraries and supports CUDA. All architectures have 24 inputs and 

Fig. 4. Block diagram of the deep neural network and open neural 
network exchange model [35].

Fig. 5. Block diagram of the embedded system.
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16 outputs, but the number of hidden layers is different. The 5 best 
resulting DNN models can be seen in Table IV. Training and valida-
tion errors, training time, accuracy, precision, recall, and F measure 
values have been compared.

The best F score was 0.9666 with 0.9869 accuracy in the test. We 
have tried more complex DNN models; however, no improvement 
has been observed. The confusion matrix can also be also seen 
in Fig. 6 F score and recall values are good enough except for the 
blender (y1) because there are only two samples in the dataset 
related to this class. Other than that, the results are promising. 

Additionally, this study has shown how BN is crucial for the DNN 
learning process. That means all layers must be normalized for 
DNN, rather than normalizing the input only. Another problem is 
back-propagations when it comes to DNNs. It is common to use 

the SoftMax output layer for multiclassification problems. The out-
put error must be distributed over hidden layers elegantly. SoftMax 
back-propagation with cross-entropy is a useful technique to do this. 
The learning curve of the DNN is shown in Fig. 7. This curve repre-
sents the change of cost, training error, and validation error based 
on each epoch.

Moreover, the effects of different activation functions were dra-
matical. Conventional functions such as tangent hyperbolic and sig-
moid cannot handle DNNs. The sigmoid activation function gives a 
smoother learning curve, but training and validation error values 
increase. This is because the sigmoid function suppresses negative 
values. On the other hand, the tangent hyperbolic function can be 
used instead, but this time the calculation cost will rise along with 
training error ripple. Therefore, the hard tangent hyperbolic func-
tion has been preferred. A hard saturating version of an activation 

TABLE IV. 
COMPARISON OF DIFFERENT DEEP NEURAL NETWORK ARCHITECTURES

DNN Architecture Training Error Validation Error Total Accuracy Total Precision F1 Score

64-128-256-128-64 0.00900 0.00808 0.980 0.9869 0.966

32-64-128-64-32 0.01012 0.00916 0.970 0.9800 0.958

64-128-256-64-32 0.01018 0.00883 0.976 0.9831 0.962

32-64-128-64-32 0.01059 0.01098 0.971 0.9799 0.957

32-64-128-256-64 0.00873 0.00816 0.972 0.9817 0.960

Fig. 6. Confusion matrix.
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function can be constructed by taking a first-order Taylor expansion 
from zero to an appropriate range [36].

Our system is using a hall-effect sensor which is non-intrusive for 
analogue measurement. The device measures both voltage and cur-
rent from a single sensor and extracts features at the same time. 
Then a pre-trained DNN analyzes these features to identify the appli-
ance. In this way, the appliance is monitored and identified by the 
system. The accuracy of the system is dependent on big data, so this 
database can be improved by introducing new devices.

This method includes the utilization of a neural network on an 
embedded system with high performance and accuracy. The real 
contribution of the paper is the realization of the method and the 
development of a single sensor intelligent measurement device. 
Moreover, the dataset used to train DNNs has multiple aspects, so 
right approach is needed for better data utilization. Showing how 
different DNN architectures can affect the result is also another con-
tribution of this paper. 

Results screen captures of some appliances are given in the fig-
ures 8 to 13. This data can be retrieved through the internet via 
TCP/IP, as they can be observed on the device terminal window. 
Furthermore, these data can be logged into a database to improve 
the accuracy of the system. The device can collect all current and 
voltage measurement data from intelligent power outlets and 
identify the type of appliance. The system gives percentages of 
probabilities according to the device ID. It can be seen from the 
device screen capture that some appliances have higher probility 
than others. The reason for that is the database, which has differ-
ent number of samples from various appliances. That is why the 
system has been designed for user who can add different appli-
ances into the database later. This way, the system will be improved 
continuously.

V. DISCUSSION
Deep learning technologies have been rapidly evolving in the past 
decade. This is also bringing some problems on both the software 
and hardware sides. Training and testing of DNNs require powerful 
hardware with GPU support and high-speed computers with fast 
data storage. On the other hand, complex calculations and statistical 

methods are being developed to overcome the problem of handling 
this big data. It is all about processing the data in the most efficient 
way to get what you need from it.

This study has focused on appliance identification problems by using 
only simple line parameters such as voltage and current. There are 
many imbalanced datasets on this problem but there are few inno-
vative approaches. Multi-state household appliance identification 
[37] uses non-intrusive load monitoring with an ANNwith 89% accu-
racy. Automated plug-load identification [38] achieves 86% accuracy 
by using ML with an ensemble classifier. Handling imbalance in an 
extended PLAID [39] achieves better result with 94.5% accuracy 
by using a support vector machine. As can be seen, those conven-
tional methods such as ML and ANNs do not achieve good results. 
However, the DL methods used in this study achieve relatively better 
results with 98% accuracy in this study.

Fig. 7. Learning curve.

Fig. 8. Results screen captures of the fan.

Fig. 9. Results screen captures of the incandescent light.
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There are many different DL methods and models. These methods 
and models require complex calculations, but they also need to be 
less exhausting on hardware. For this reason, different normalization 
methods with effective activation functions should be considered for 
DNNs. Back-propagation is another problem for multi-layered DNNs. 
Combining more than one technique is very useful for creating effec-
tive and elegant new methods. This study has created a DNN by 
using BM and SoftMax back-propagating with cross-entropy for the 
identification of appliances from an imbalanced dataset.

VI. CONCLUSION

This developed method has been tested in real-time by running on 
an embedded artificial intelligence computer. First, the test data 
was checked to determine whether the algorithm worked correctly 
or not, and then the device detection was carried out with real-
time measurement values. By increasing the number of modules 

used by the device for analog measurement, the information on 
energy-consuming devices in the whole system can be collected 
and analyzed via smart power outlets. It is also possible for users 
to introduce different devices that are not in the dataset to the 
system by labeling them. In this way, a constantly learning sys-
tem has been developed within a constantly updated database. 
In addition, the device recognition diversity of the system can be 
improved by making use of different data sets such as those given 
in the introduction.

Future studies will focus on the implementation of this system 
for a smart grid or smart home. This way, it will be easier to man-
age power consumption and remote control of all appliances. 
Especially, it is good for use as an Internet of things (IOT)-based 
system. On the other hand, this kind of intelligent measurement 
device will help renewable energy systems to be optimized for 
power consumption.

Fig. 10. Results screen captures of the washing machine.

Fig. 11. Results screen captures of the hairdryer.

Fig. 12. Results screen captures of the refrigerator.

Fig. 13. Results screen captures of the vacuum cleaner.
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